224 research outputs found

    Treatment of ongoing autoimmune encephalomyelitis with activated B-cell progenitors maturing into regulatory B cells.

    Get PDF
    The influence of signals perceived by immature B cells during their development in bone marrow on their subsequent functions as mature cells are poorly defined. Here, we show that bone marrow cells transiently stimulated in vivo or in vitro through the Toll-like receptor 9 generate proB cells (CpG-proBs) that interrupt experimental autoimmune encephalomyelitis (EAE) when transferred at the onset of clinical symptoms. Protection requires differentiation of CpG-proBs into mature B cells that home to reactive lymph nodes, where they trap T cells by releasing the CCR7 ligand, CCL19, and to inflamed central nervous system, where they locally limit immunopathogenesis through interleukin-10 production, thereby cooperatively inhibiting ongoing EAE. These data demonstrate that a transient inflammation at the environment, where proB cells develop, is sufficient to confer regulatory functions onto their mature B-cell progeny. In addition, these properties of CpG-proBs open interesting perspectives for cell therapy of autoimmune diseases

    Utilization of TREC and KREC quantification for the monitoring of early T- and B-cell neogenesis in adult patients after allogeneic hematopoietic stem cell transplantation

    Get PDF
    BACKGROUND: After hematopoietic stem cell transplantation (HSCT) T- and B-cell reconstitution from primary lymphoid organs are a prerequisite for an effective early lymphocyte reconstitution and a long-term survival for adult patients suffering from acute leukemia. Here, we asked whether quantification of T cell receptor excision circle, (TREC) and kappa-deleting recombination excision circle (KREC) before and within six month after allogeneic HSCT could be used to measure the thymic and bone marrow outputs in such patients. METHODS: We used a duplex real time PCR assay to quantify the absolute copy counts of TREC and KREC, and correlated the data with absolute cell counts of CD3+CD4+ T-cell and CD19+ B-cell subsets determined by flow cytometry, respectively. RESULTS: By comparing two recently proposed naive T cell subsets, CD31+ naive and CD31- naive T cells, we found a better correlation for the CD31+ subset with TREC level post alloHSCT, in line with the assumption that it contained T cells recently derived from the thymus, indicating that TREC levels reflected real thymic de novo production. Transitional as well as naive B cells highly correlated with KREC levels, which suggested an association of KREC levels with ongoing bone marrow B cell output. CD45RO+ memory T cells and CD27+ memory B cells were significantly less correlated with TREC and KREC recovery, respectively. CONCLUSION: We conclude that simultaneous TREC/ KREC quantification is as a suitable and practicable method to monitor thymic and bone marrow output post alloHSCT in adult patients diagnosed with acute leukemia

    What\u27s new in online news?

    Get PDF
    This paper examines aspects of the field of Information Systems (IS) concerned with its diversity and with the rapid changes within the discipline that have been incurred by the continued evolution of the IS artefact. This examination is done in order to establish the suitability of the Cynefin framework, developed for knowledge management, as a suitable tool for sense-making in IS. A description and assessment of the Cynefin framework is provided with its varied applications in both organisational practice and research. The paper then applies the framework to make sense of some historical trends and contemporary issues of IS emphasising their diversity and changing nature. We conclude with speculation on how this approach may help guide future sense-making in IS research

    AKT activity orchestrates marginal zone B cell development in mice and humans.

    Get PDF
    The signals controlling marginal zone (MZ) and follicular (FO) B cell development remain incompletely understood. Here, we show that AKT orchestrates MZ B cell formation in mice and humans. Genetic models that increase AKT signaling in B cells or abolish its impact on FoxO transcription factors highlight the AKT-FoxO axis as an on-off switch for MZ B cell formation in mice. In humans, splenic immunoglobulin (Ig) D <sup>+</sup> CD27 <sup>+</sup> B cells, proposed as an MZ B cell equivalent, display higher AKT signaling than naive IgD <sup>+</sup> CD27 <sup>-</sup> and memory IgD <sup>-</sup> CD27 <sup>+</sup> B cells and develop in an AKT-dependent manner from their precursors in vitro, underlining the conservation of this developmental pathway. Consistently, CD148 is identified as a receptor indicative of the level of AKT signaling in B cells, expressed at a higher level in MZ B cells than FO B cells in mice as well as humans

    Passive experimental autoimmune encephalomyelitis in C57BL/6 with MOG: evidence of involvement of B cells

    Get PDF
    Experimental autoimmune encephalomyelitis (EAE) is the most relevant animal model to study demyelinating diseases such as multiple sclerosis. EAE can be induced by active (active EAE) or passive (at-EAE) transfer of activated T cells in several species and strains of rodents. However, histological features of at-EAE model in C57BL/6 are poorly described. The aim of this study was to characterize the neuroinflammatory and neurodegenerative responses of at-EAE in C57BL/6 mice by histological techniques and compare them with that observed in the active EAE model. To develop the at-EAE, splenocytes from active EAE female mice were harvested and cultured in presence of MOG 35-55 and IL-12, and then injected intraperitoneally in recipient female C57BL6/J mice. In both models, the development of EAE was similar except for starting before the onset of symptoms and presenting a higher EAE cumulative score in the at-EAE model. Spinal cord histological examination revealed an increased glial activation as well as more extensive demyelinating areas in the at-EAE than in the active EAE model. Although inflammatory infiltrates composed by macrophages and T lymphocytes were found in the spinal cord and brain of both models, B lymphocytes were significantly increased in the at-EAE model. The co-localization of these B cells with IgG and their predominant distribution in areas of demyelination would suggest that IgG-secreting B cells are involved in the neurodegenerative processes associated with at-EAE

    Amplified B Lymphocyte CD40 Signaling Drives Regulatory B10 Cell Expansion in Mice

    Get PDF
    Aberrant CD40 ligand (CD154) expression occurs on both T cells and B cells in human lupus patients, which is suggested to enhance B cell CD40 signaling and play a role in disease pathogenesis. Transgenic mice expressing CD154 by their B cells (CD154(TG)) have an expanded spleen B cell pool and produce autoantibodies (autoAbs). CD22 deficient (CD22(-/-)) mice also produce autoAbs, and importantly, their B cells are hyper-proliferative following CD40 stimulation ex vivo. Combining these 2 genetic alterations in CD154(TG)CD22(-/-) mice was thereby predicted to intensify CD40 signaling and autoimmune disease due to autoreactive B cell expansion and/or activation.CD154(TG)CD22(-/-) mice were assessed for their humoral immune responses and for changes in their endogenous lymphocyte subsets. Remarkably, CD154(TG)CD22(-/-) mice were not autoimmune, but instead generated minimal IgG responses against both self and foreign antigens. This paucity in IgG isotype switching occurred despite an expanded spleen B cell pool, higher serum IgM levels, and augmented ex vivo B cell proliferation. Impaired IgG responses in CD154(TG)CD22(-/-) mice were explained by a 16-fold expansion of functional, mature IL-10-competent regulatory spleen B cells (B10 cells: 26.7×10(6)±6 in CD154(TG)CD22(-/-) mice; 1.7×10(6)±0.4 in wild type mice, p<0.01), and an 11-fold expansion of B10 cells combined with their ex vivo-matured progenitors (B10+B10pro cells: 66×10(6)±3 in CD154(TG)CD22(-/-) mice; 6.1×10(6)±2 in wild type mice, p<0.01) that represented 39% of all spleen B cells.These results demonstrate for the first time that the IL-10-producing B10 B cell subset has the capacity to suppress IgG humoral immune responses against both foreign and self antigens. Thereby, therapeutic agents that drive regulatory B10 cell expansion in vivo may inhibit pathogenic IgG autoAb production in humans

    Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells

    Get PDF
    We describe new T cell receptor (TCR) transgenic mice (relapsing-remitting [RR] mice) carrying a TCR specific for myelin oligodendrocyte glycoprotein (MOG) peptide 92–106 in the context of I-As. Backcrossed to the SJL/J background, most RR mice spontaneously develop RR experimental autoimmune encephalomyelitis (EAE) with episodes often altering between different central nervous system tissues like the cerebellum, optic nerve, and spinal cord. Development of spontaneous EAE depends on the presence of an intact B cell compartment and on the expression of MOG autoantigen. There is no spontaneous EAE development in B cell–depleted mice or in transgenic mice lacking MOG. Transgenic T cells seem to expand MOG autoreactive B cells from the endogenous repertoire. The expanded autoreactive B cells produce autoantibodies binding to a conformational epitope on the native MOG protein while ignoring the T cell target peptide. The secreted autoantibodies are pathogenic, enhancing demyelinating EAE episodes. RR mice constitute the first spontaneous animal model for the most common form of multiple sclerosis (MS), RR MS

    Dendritic cells license regulatory B cells to produce IL-10 and mediate suppression of antigen-specific CD8 T cells

    Get PDF
    Regulatory B cells (Bregs) suppress and reduce autoimmune pathology. However, given the variety of Breg subsets, the role of Bregs in the pathogenesis of type 1 diabetes is still unclear. Here, we dissect this fundamental mechanism. We show that natural protection from type 1 diabetes in nonobese diabetic (NOD) mice is associated with increased numbers of IL-10-producing B cells, while development of type 1 diabetes in NOD mice occurs in animals with compromised IL-10 production by B cells. However, B cells from diabetic mice regain IL-10 function if activated by the innate immune receptor TLR4 and can suppress insulin-specific CD8 T cells in a dendritic cell (DC)-dependent, IL-10-mediated fashion. Suppression of CD8 T cells is reliant on B-cell contact with DCs. This cell contact results in deactivation of DCs, inducing a tolerogenic state, which in turn can regulate pathogenic CD8 T cells. Our findings emphasize the importance of DC–Breg interactions during the development of type 1 diabetes

    TLR1/2, TLR7, and TLR9 Signals Directly Activate Human Peripheral Blood Naive and Memory B Cell Subsets to Produce Cytokines, Chemokines, and Hematopoietic Growth Factors

    Get PDF
    Recently, it has been reported that using multiple signals, murine and human B cells secrete several cytokines with pro-inflammatory and immunoregulatory properties. We present the first comprehensive analysis of 24 cytokines, chemokines, and hematopoietic growth factors production by purified human peripheral blood B cells (CD19+), and naive (CD19+CD27-) and memory (CD19+CD27+) B cells in response to direct and exclusive signaling provided by toll-like receptor (TLR) ligands Pam3CSK (TLR1/TLR2), Imiquimod (TLR7), and GpG-ODN2006 (TLR9). All three TLR ligands stimulated B cells (CD19+) to produce cytokines IL-1α, IL-1β, IL-6, TNF-α, IL-13, and IL-10, and chemokines MIP-1α, MIP-1β, MCP-1, IP-10, and IL-8. However, GM-CSF and G-CSF production was predominantly induced by TLR2 agonist. Most cytokines/chemokines/hematopoietic growth factors were predominantly or exclusively produced by memory B cells, and in general, TLR2 signal was more powerful than signal provided viaTLR7 and TLR9. No significant secretion of eotaxin, IFN-α, IFN-γ, IL-2, IL-3, IL-4, IL-5, IL-7, IL-15, IL-17, IL-12p40, IL-12p70, and TNF-β (lymphotoxin) was observed. These data demonstrate that human B cells can be directly activated viaTLR1/TLR2, TLR7, and TLR9 to induce secretion of cytokines, chemokines, and hematopoietic growth factors and suggest a role of B cells in immune response against microbial pathogenesis and immune homeostasis
    corecore